pengertian dan prinsip kerja Dioda Bridge

Pengertian Dioda Bridge (Dioda Jembatan) dan Prinsip Kerjanya – Dioda Bridge (Bridge Diode) atau dalam bahasa Indonesia disebut dengan Dioda Jembatan adalah jenis dioda yang berfungsi sebagai penyearah arus bolak-balik (Alternating Current/AC) menjadi arus searah (Direct Current/DC). Dioda Bridge pada dasarnya merupakan susunan dari empat buah Dioda yang dirangkai dalam konfigurasi rangkaian jembatan (bridge) yang dikemas menjadi satu perangkat komponen yang berkaki empat. Dua kaki Terminal dipergunakan sebagai Input untuk tegangan/arus listrik AC (bolak balik) sedangkan dua kaki terminalnya lagi adalah terminal Output yaitu Terminal Output Positif (+) dan Terminal Output Negatif (-).

Konfigurasi rangkaian jembatan Bridge Diode ini dapat menghasilkan polaritas atau arah yang sama pada Output dari kedua polaritas Input yang bolak-balik. Tentunya, sama seperti dioda pada umumnya, Dioda Bridge juga terbuat dari bahan semikonduktor. Dioda Bridge atau Dioda Jembatan ini biasanya tersedia dalam bentuk Single In Line (SIL) dan Dual In Line (DIL).

Diode Bridge yang merupakan komponen untuk penyearah gelombang penuh (full wave rectifier) ini adalah penyearah yang sering digunakan dalam rangkaian Pencatu Daya (Power Supply) karena kinerjanya yang lebih baik dengan ukuran yang lebih kecil dan juga biaya yang relatif murah dibanding dengan penyearah gelombang penuh yang dihubungkan dengan transformator center tap (trafo CT).

Fitur terpenting pada Dioda Bridge ini adalah memiliki polaritas output yang sama meskipun polaritas Inputnya terbalik atau bolak balik. Rangkaian Jembatan pada Dioda ini ditemukan oleh Karol Pollak yaitu seorang teknisi elektro yang berasal dari Polandia. Temuan tersebut kemudian dipatenkan pada tanggal 14 Januari 1896.

Berikut ini adalah gambar dari Dioda Bridge :



 

Prinsip Kerja Dioda Bridge (Bridge Diode)

Prinsip Kerja Dioda Bridge pada dasarnya sama dengan 4 buah dioda penyearah biasa yang disusun dalam rangkaian jembatan. Cara kerjanya pun sama dengan cara kerja Penyearah Gelombang Penuh (Full Wave Rectifier). Untuk lebih jelas mengenai cara kerja bridge diode, kita dapat melihat gambar dibawah ini :Prinsip Kerja Dioda Bridge

 
 Seperti yang kita lihat pada gambar diatas, keempat Dioda yang diberi label D1, D2, D3 dan D4 disusun secara “seri berpasangan” dengan hanya dua dioda saja yang melewatkan arus satu sisi sinyal atau arus setengah siklus gelombang (half cycle). Pada saat sisi sinyal positif (+) diberikan ke Input-1 dan sinyal negatif (-) diberikan ke Input-2 Dioda bridge, rangkaian internal D1 dan D2 akan berada dalam kondisi Forward Bias sehingga melewatkan sinyal positif tersebut, sedangkan D3 dan D4 akan berada dalam kondisi Reverse Bias yang menghambat sinyal sisi negatifnya (lihat gambar (a) diatas.

Kemudian pada saat sinyal berubah menjadi sinyal negatif (-) yang diberikan ke Input-1 dan sinyal positif (+) ke Input-2 Dioda bridge maka D3 dan D4 akan berubah juga menjadi kondisi Forward Bias yang melewatkan sedangkan D1 dan D2-nya menjadi reverse bias yang menghambat sinyal sisi negatif (lihat gambar (b) diatas).  Hasil dari Penyearah gelombang penuh adalah seperti yang dapat kita lihat di gambar c diatas.

pengertian resistor dan cara menghitung nilai resistor



Resistor merupakan komponen penting dan sering dijumpai dalam sirkuit Elektronik. Boleh dikatakan hampir setiap sirkuit Elektronik pasti ada Resistor. Tetapi banyak diantara kita yang bekerja di perusahaan perakitan Elektronik maupun yang menggunakan peralatan Elektronik tersebut tidak mengetahui cara membaca kode warna ataupun kode angka yang ada ditubuh Resistor itu sendiri.

Berdasarkan bentuknya dan proses pemasangannya pada PCB, Resistor terdiri 2 bentuk yaitu bentuk Komponen Axial/Radial dan Komponen Chip. Untuk bentuk Komponen Axial/Radial, nilai resistor diwakili oleh kode warna sehingga kita harus mengetahui cara membaca dan mengetahui nilai-nilai yang terkandung dalam warna tersebut sedangkan untuk komponen chip, nilainya diwakili oleh Kode tertentu sehingga lebih mudah dalam membacanya.

Kita juga bisa mengetahui nilai suatu Resistor dengan cara menggunakan alat pengukur Ohm Meter atau MultiMeter. Satuan nilai Resistor adalah Ohm (Ω).



Cara menghitung nilai Resistor berdasarkan Kode Warna

 

Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.

Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.

Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :



Perhitungan untuk Resistor dengan 4 Gelang warna :




Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan angka langsung dari kode warna Gelang ke-3
Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut


Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5
Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 5 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.



Contoh-contoh perhitungan lainnya :

Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi
Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi

Cara menghitung Toleransi :
2.200 Ohm dengan Toleransi 5% =
2200 – 5% = 2.090
2200 + 5% = 2.310
ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm


Untuk mempermudah menghafalkan warna di Resistor, kami memakai singkatan seperti berikut :
HI CO ME O KU JAU BI UNG A PU
(HItam, COklat, MErah, Orange, KUning. HiJAU, BIru, UNGu, Abu-abu, PUtih)




Cara menghitung nilai Resistor berdasarkan Kode Angka :

Membaca nilai Resistor yang berbentuk komponen Chip lebih mudah dari Komponen Axial, karena tidak menggunakan kode warna sebagai pengganti nilainya. Kode yang digunakan oleh Resistor yang berbentuk Komponen Chip menggunakan Kode Angka langsung jadi sangat mudah dibaca atau disebut dengan Body Code Resistor (Kode Tubuh Resistor)







Contoh :

Kode Angka yang tertulis di badan Komponen Chip Resistor adalah 4 7 3;
Contoh cara pembacaan dan cara menghitung nilai resistor berdasarkan kode angka adalah sebagai berikut :
Masukkan Angka ke-1 langsung = 4
Masukkan Angka ke-2 langsung = 7
Masukkan Jumlah nol dari Angka ke 3 = 000 (3 nol) atau kalikan dengan 10³
Maka nilainya adalah 47.000 Ohm atau 47 kilo Ohm (47 kOhm)

Contoh-contoh perhitungan lainnya :
222 → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm
103 → 10 * 10³ = 10.000 Ohm atau 10 Kilo Ohm
334 → 33 * 104 = 330.000 Ohm atau 330 Kilo Ohm

Ada juga yang memakai kode angka seperti dibawah ini :
(Tulisan R menandakan letaknya koma decimal)

4R7 = 4,7 Ohm
0R22 = 0,22 Ohm
Keterangan :
Ohm = Ω
Kilo Ohm = KΩ
Mega Ohm = MΩ
1.000 Ohm = 1 kilo Ohm (1 KΩ )
1.000.000 Ohm = 1 Mega Ohm (1 MΩ)
1.000 kilo Ohm = 1 Mega Ohm (1 MΩ)